Laws of Exponents

- Zero as an exponent:
 - A number to the exponent of 0 is always 1
 - Examples: $(-5.9)^0 = 1$ $123^0 = 1$ $x^0 = 1$
- Negative Exponents
 - Negative exponent on top of fraction, bring it to the bottom and make it
 positive
 - Negative exponent on the bottom, bring it to the top and make it positive
 - Examples: $x^2y^3z = \frac{x^2z}{y^3}$ $\frac{x^3y^3}{z^{-3}} = x^3y^3z^3$

More laws

- Multiplication rule
 - When Multiplying 2 Numbers with the Same Bases, Keep the Base and Add the Exponent
 - Example: $x^7 \cdot x^4 = x^{7+4} = x^{11}$
- Division Rule
 - When Divide 2 Numbers with the Same Base, Subtract the Exponents
 - Example: $\frac{x^7}{4} = x^{7-4} = x^3$
- · Power to a Power
 - · When you have a Power to a Power, Multiply the Exponents
 - Example: $(x^4)^7 = x^{4(7)} = x^{28}$

Ex. 1) Which equation correctly shows that $(x^5)^2 = x^{10}$

C.)
$$(x^5)^2 = 2(5x) = 10x = x^{10}$$

D.) $(x^5)^2 = 2x^5 = x^5 + x^5 = x^{10}$

$$(\chi^5)^2 \leftarrow \text{means write } \chi^5 \text{ twice.}$$
 $\chi^5 \text{ means } \chi \cdot \chi \cdot \chi \cdot \chi \cdot \chi$
 $(\chi^5)(\chi^5)$

Ex. 2 Simplify the following expression

72.62

Some expression

$$7.6=42$$
 keep exponent
$$50$$

$$742^{2}$$